Computing Betti tables and minimal presentations of zero-dimensional persistent homology
Abstract
The Betti tables of a multigraded module encode the grades at which there is an algebraic change in the module. Multigraded modules show up in many areas of pure and applied mathematics, and in particular in topological data analysis, where they are known as persistence modules, and where their Betti tables describe the places at which the homology of filtered simplicial complexes change. Although Betti tables of singly and bigraded modules are already being used in applications of topological data analysis, their computation in the bigraded case (which relies on an algorithm that is cubic in the size of the filtered simplicial complex) is a bottleneck when working with large datasets. We show that, in the special case of $0$-dimensional homology (which is relevant for clustering and graph classification) the Betti tables of a bigraded module can be computed in log-linear time. We also consider the problem of computing minimal presentations, and show that a minimal presentation of $0$-dimensional persistent homology can be computed in quadratic time, regardless of the grading poset.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2024
- DOI:
- arXiv:
- arXiv:2410.22242
- Bibcode:
- 2024arXiv241022242M
- Keywords:
-
- Computer Science - Computational Geometry;
- Mathematics - Algebraic Topology
- E-Print:
- 19 pages, 1 figure