Model-agnostic basis functions for the 2-point correlation function of dark matter in linear theory
Abstract
We consider approximating the linearly evolved 2-point correlation function (2pcf) of dark matter $\xi_{\rm lin}(r;\boldsymbol{\theta})$ in a cosmological model with parameters $\boldsymbol{\theta}$ as the linear combination $\xi_{\rm lin}(r;\boldsymbol{\theta})\approx\sum_i\,b_i(r)\,w_i(\boldsymbol{\theta})$, where the functions $\mathcal{B}=\{b_i(r)\}$ form a $\textit{model-agnostic basis}$ for the linear 2pcf. This decomposition is important for model-agnostic analyses of the baryon acoustic oscillation (BAO) feature in the nonlinear 2pcf of galaxies that fix $\mathcal{B}$ and leave the coefficients $\{w_i\}$ free. To date, such analyses have made simple but sub-optimal choices for $\mathcal{B}$, such as monomials. We develop a machine learning framework for systematically discovering a $\textit{minimal}$ basis $\mathcal{B}$ that describes $\xi_{\rm lin}(r)$ near the BAO feature in a wide class of cosmological models. We use a custom architecture, denoted $\texttt{BiSequential}$, for a neural network (NN) that explicitly realizes the separation between $r$ and $\boldsymbol{\theta}$ above. The optimal NN trained on data in which only $\{\Omega_{\rm m},h\}$ are varied in a $\textit{flat}$ $\Lambda$CDM model produces a basis $\mathcal{B}$ comprising $9$ functions capable of describing $\xi_{\rm lin}(r)$ to $\sim0.6\%$ accuracy in $\textit{curved}$ $w$CDM models varying 7 parameters within $\sim5\%$ of their fiducial, flat $\Lambda$CDM values. Scales such as the peak, linear point and zero-crossing of $\xi_{\rm lin}(r)$ are also recovered with very high accuracy. We compare our approach to other compression schemes in the literature, and speculate that $\mathcal{B}$ may also encompass $\xi_{\rm lin}(r)$ in modified gravity models near our fiducial $\Lambda$CDM model. Using our basis functions in model-agnostic BAO analyses can potentially lead to significant statistical gains.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2024
- DOI:
- arXiv:
- arXiv:2410.21374
- Bibcode:
- 2024arXiv241021374P
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Computer Science - Machine Learning
- E-Print:
- 20 pages, 9 figures, to be submitted to JCAP. The implementation of the BiSequential architecture, along with a simple example notebook, is publicly available as part of the MLFundas repository at https://github.com/a-paranjape/mlfundas