Upper bounds for multicolour Ramsey numbers
Abstract
The $r$-colour Ramsey number $R_r(k)$ is the minimum $n \in \mathbb{N}$ such that every $r$-colouring of the edges of the complete graph $K_n$ on $n$ vertices contains a monochromatic copy of $K_k$. We prove, for each fixed $r \geqslant 2$, that $$R_r(k) \leqslant e^{-\delta k} r^{rk}$$ for some constant $\delta = \delta(r) > 0$ and all sufficiently large $k \in \mathbb{N}$. For each $r \geqslant 3$, this is the first exponential improvement over the upper bound of Erdős and Szekeres from 1935. In the case $r = 2$, it gives a different (and significantly shorter) proof of a recent result of Campos, Griffiths, Morris and Sahasrabudhe.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2024
- DOI:
- arXiv:
- arXiv:2410.17197
- Bibcode:
- 2024arXiv241017197B
- Keywords:
-
- Mathematics - Combinatorics
- E-Print:
- 17 pages