With a Grain of SALT: Are LLMs Fair Across Social Dimensions?
Abstract
This paper presents an analysis of biases in open-source Large Language Models (LLMs) across various genders, religions, and races. We introduce a methodology for generating a bias detection dataset using seven bias triggers: General Debate, Positioned Debate, Career Advice, Story Generation, Problem-Solving, Cover-Letter Writing, and CV Generation. We use GPT-4o to generate a diverse set of prompts for each trigger across various genders, religious and racial groups. We evaluate models from Llama and Gemma family on the generated dataset. We anonymise the LLM-generated text associated with each group using GPT-4o-mini and do a pairwise comparison using GPT-4o-as-a-Judge. To quantify bias in the LLM-generated text we use the number of wins and losses in the pairwise comparison. Our analysis spans three languages, English, German, and Arabic to explore how language influences bias manifestation. Our findings reveal that LLMs exhibit strong polarization toward certain groups across each category, with a notable consistency observed across models. However, when switching languages, variations and anomalies emerge, often attributable to cultural cues and contextual differences.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2024
- DOI:
- arXiv:
- arXiv:2410.12499
- Bibcode:
- 2024arXiv241012499A
- Keywords:
-
- Computer Science - Computation and Language