Exponents of Jacobians and relative class groups
Abstract
We prove a lower bound for the exponent of the relative class group $\mathrm{Pic}^0 X_1/\phi^* \mathrm{Pic}^0 X_2$ for a covering of curves $X_1 \to X_2$ over a finite field $\mathbb{F}_q$. The results improve on the existing best bounds (due to Stichtenoth) in the case $X_2=\mathbb{P}^1$, when the relative class group equals the class group of the function field $\mathbb{F}_q(X_1)$, and are completely new for the genuinely relative situation.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2024
- DOI:
- arXiv:
- arXiv:2410.11962
- Bibcode:
- 2024arXiv241011962K
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Algebraic Geometry;
- 11R58;
- 11R29;
- 14H40
- E-Print:
- v1: 9 pages, comments welcome