Supermassive primordial black holes for the GHZ9 and UHZ1 observed by the JWST
Abstract
The high redshift ($z>10$) galaxies GHZ9 and UHZ1 observed by the James Webb Space Telescope (JWST) are very massive and have exceptionally high black hole-to-star mass ratios with the central black hole masses $M\gtrsim 10^7\rm~M_\odot$. In this paper, we explore the possibility that they are seeded by the supermassive primordial black holes (SMPBHs), which came into being in the very early universe, with initial masses $\sim 10^7\rm~M_\odot$. We present the self-similar accretion solutions for SMPBHs, and find that the mass growth of SMPBHs during pregalactic era may be negligible. These SMPBHs, when the redshift $z\lesssim 20$, can accelerate seeding high-redshift galaxies and their baryonic content, and consequently explain the central supermassive black holes (SMBHs) of high-redshift massive galaxies through sub-Eddington accretion. According to our results, SMPBHs actually could lead to the existence of more massive SMBHs at higher redshifts compared to other SMBH seed scenarios, specially SMBHs with masses $M\gtrsim 10^7~\rm M_\odot$ at $z>20$ might only origin from SMPBHs, thus the corresponding observation can serve as a potential probe to PBHs.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2024
- DOI:
- arXiv:
- arXiv:2410.05891
- Bibcode:
- 2024arXiv241005891H
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- General Relativity and Quantum Cosmology
- E-Print:
- 14 pages, 5 figures