Chromospheric Mg I emission lines of pre-main-sequence stars
Abstract
Context. To reveal details of the internal structure, the relationship between chromospheric activity and the Rossby number has been extensively examined for main-sequence stars. For active pre-main-sequence (PMS) stars, it is suggested that the level of activity be assessed using optically thin emission lines, such as Mg I. Aims. We aim to detect Mg I chromospheric emission lines from PMS stars and to determine whether the chromosphere is activated by the dynamo process or by mass accretion from protoplanetary disks. Methods. We analyzed high-resolution optical spectra of 64 PMS stars obtained with the Very Large Telescope (VLT)/X-shooter and UVES and examined the infrared Ca II (8542 ร ) and Mg I (8807 ร ) emission lines. To detect the weak chromospheric emission lines, we determined the atmospheric parameters (Teff and log ๐) and the degree of veiling of the PMS stars by comparing the observed spectra with photospheric model spectra. Results. After subtracting the photospheric model spectrum from the PMS spectrum, we detected Ca II and Mg I as emission lines. The strengths of the Mg I emission lines in PMS stars with no veiling are comparable to those in zero-age main-sequence (ZAMS) stars if both types of stars have similar Rossby numbers. The Mg I emission lines in these PMS stars are thought to be formed by a dynamo process similar to that in ZAMS stars. In contrast, the Mg I emission lines in PMS stars with veiling are stronger than those in ZAMS stars. These objects are believed to have protoplanetary disks, where mass accretion generates shocks near the photosphere, heating the chromosphere. Conclusions. The chromosphere of PMS stars is activated not only by the dynamo process but also by mass accretion. โ Just to show the usage of the elements in the author field.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2410.03087
- Bibcode:
- 2024A&A...691A.304Y
- Keywords:
-
- accretion;
- accretion disks;
- techniques: spectroscopic;
- stars: chromospheres;
- stars: low-mass;
- stars: pre-main sequence;
- stars: rotation;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- accepted for Astronomy and Astrophysics