Frequency-shifted laser feedback interferometry in non-planar ring oscillators
Abstract
Laser feedback interferometry (LFI) has a wide range of applications such as displacement, distance and velocity measurements. LFI has been realized in many types of lasers but has never been reported in non-planar ring oscillators (NPRO) to the best of our knowledge. In this letter, we present a new type of LFI based on an NPRO laser. The intrinsic resistance to optical feedback in NPROs is broken under weak-magnetic-intensity condition, where stable bidirectional lasing is initiated in the ring cavity. The interference signal, i.e., the beat of the bidirectional lasing is with frequency from a few hundred of kilohertz to a few megahertz which is mainly determined by the applied magnetic intensity in NPRO. Frequency-shifted LFI is thus constructed in NPRO without using acousto-optic modulators as mostly used in conventional LFI. A theoretical model is established to well describe the phenomenon. In the end, micro-vibrational measurements are demonstrated to prove the potential application, where vibration-detection amplitude limit below 30 pm, vibration-detection frequency range from a few kilohertz to a few hundred kilohertz is achieved. Benefiting from the characteristics of tiny footprint, ruggedized structure, long lifetime and ultralow-noise of NPRO lasers, NPRO-based LFI may find important applications in industry, scientific research, military and aerospace.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2024
- DOI:
- arXiv:
- arXiv:2409.19870
- Bibcode:
- 2024arXiv240919870Z
- Keywords:
-
- Physics - Optics