Convergence-aware Clustered Federated Graph Learning Framework for Collaborative Inter-company Labor Market Forecasting
Abstract
Labor market forecasting on talent demand and supply is essential for business management and economic development. With accurate and timely forecasts, employers can adapt their recruitment strategies to align with the evolving labor market, and employees can have proactive career path planning according to future demand and supply. However, previous studies ignore the interconnection between demand-supply sequences among different companies and positions for predicting variations. Moreover, companies are reluctant to share their private human resource data for global labor market analysis due to concerns over jeopardizing competitive advantage, security threats, and potential ethical or legal violations. To this end, in this paper, we formulate the Federated Labor Market Forecasting (FedLMF) problem and propose a Meta-personalized Convergence-aware Clustered Federated Learning (MPCAC-FL) framework to provide accurate and timely collaborative talent demand and supply prediction in a privacy-preserving way. First, we design a graph-based sequential model to capture the inherent correlation between demand and supply sequences and company-position pairs. Second, we adopt meta-learning techniques to learn effective initial model parameters that can be shared across companies, allowing personalized models to be optimized for forecasting company-specific demand and supply, even when companies have heterogeneous data. Third, we devise a Convergence-aware Clustering algorithm to dynamically divide companies into groups according to model similarity and apply federated aggregation in each group. The heterogeneity can be alleviated for more stable convergence and better performance. Extensive experiments demonstrate that MPCAC-FL outperforms compared baselines on three real-world datasets and achieves over 97% of the state-of-the-art model, i.e., DH-GEM, without exposing private company data.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2024
- DOI:
- arXiv:
- arXiv:2409.19545
- Bibcode:
- 2024arXiv240919545G
- Keywords:
-
- Computer Science - Machine Learning