Brownian Last Passage Percolation with functional initial condition
Abstract
Brownian last passage percolation is a classical model of integrable probability and the KPZ universality class. We consider the Brownian last passage model with a functional initial condition: $$BLPP(X;(t,m)) = \max_{0 \leq t_0 \leq t_1 \leq \cdots \leq t_m = t} X(t_0) + \sum_{k=1}^m B_k(t_k) - B_k(t_{k-1}).$$ Here $X: [0,1] \to \mathbb{R}$ and $B_k$ are independent, standard Brownian motions. We derive a formula for finite dimensional laws of $t \mapsto BLPP(X;(t,m))$ in terms of a Fredholm determinant.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2024
- DOI:
- arXiv:
- arXiv:2409.19319
- Bibcode:
- 2024arXiv240919319R
- Keywords:
-
- Mathematics - Probability;
- Mathematical Physics