A study on the effects of mixed explicit and implicit communications in human-virtual-agent interactions
Abstract
Communication between humans and robots (or virtual agents) is essential for interaction and often inspired by human communication, which uses gestures, facial expressions, gaze direction, and other explicit and implicit means. This work presents an interaction experiment where humans and virtual agents interact through explicit (gestures, manual entries using mouse and keyboard, voice, sound, and information on screen) and implicit (gaze direction, location, facial expressions, and raise of eyebrows) communication to evaluate the effect of mixed explicit-implicit communication against purely explicit communication. Results obtained using Bayesian parameter estimation show that the number of errors and task execution time did not significantly change when mixed explicit and implicit communications were used, and neither the perceived efficiency of the interaction. In contrast, acceptance, sociability, and transparency of the virtual agent increased when using mixed communication modalities (88.3%, 92%, and 92.9% of the effect size posterior distribution of each variable, respectively, were above the upper limit of the region of practical equivalence). This suggests that task-related measures, such as time, number of errors, and perceived efficiency of the interaction, have not been influenced by the communication type in our particular experiment. However, the improvement of subjective measures related to the virtual agent, such as acceptance, sociability, and transparency, suggests that humans are more receptive to mixed explicit and implicit communications.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2024
- DOI:
- 10.48550/arXiv.2409.18745
- arXiv:
- arXiv:2409.18745
- Bibcode:
- 2024arXiv240918745A
- Keywords:
-
- Computer Science - Robotics
- E-Print:
- Main paper with 22 pages, 12 figures, 4 tables. Added supplementary material with 17 pages, 16 figures. Submitted to International Journal of Social Robotics