The Defining Characteristic Case of the Representations of $\mathrm{GL}_{n}$ and $\mathrm{SL}_{n}$ over Principal Ideal Local Rings
Abstract
Let $W_{r}(\mathbb{F}_{q})$ be the ring of Witt vectors of length $r$ with residue field $\mathbb{F}_{q}$ of characteristic $p$. In this paper, we study the defining characteristic case of the representations of $\mathrm{GL}_{n}$ and $\mathrm{SL}_{n}$ over the principal ideal local rings $W_{r}(\mathbb{F}_{q})$ and $\mathbb{F}_{q}[t]/t^{r}$. Let ${\mathbf{G}}$ be either $\mathrm{GL}_{n}$ or $\mathrm{SL}_{n}$ and $F$ a perfect field of characteristic $p$, we prove that for most $p$ the group algebras $F[{\mathbf{G}}(W_{r}(\mathbb{F}_{q}))]$ and $F[{\mathbf{G}}(\mathbb{F}_{q}[t]/t^{r})]$ are not stably equivalent of Morita type. Thus, the group algebras $F[{\mathbf{G}}(W_{r}(\mathbb{F}_{q}))]$ and $F[{\mathbf{G}}(\mathbb{F}_{q}[t]/t^{r})]$ are not isomorphic in the defining characteristic case.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2024
- DOI:
- 10.48550/arXiv.2409.17982
- arXiv:
- arXiv:2409.17982
- Bibcode:
- 2024arXiv240917982M
- Keywords:
-
- Mathematics - Representation Theory;
- Mathematics - Group Theory;
- 20C20;
- 20G05
- E-Print:
- 10 pages, comments are welcome!