Robust Sensor-Limited Control with Safe Input-Output Constraints for Hydraulic In-Wheel Motor Drive Mobility Systems
Abstract
In-wheel drive (IWD) systems enhance the responsiveness, traction, and maintenance efficiency of vehicles by enabling each wheel to operate independently. This paper proposes a novel robust torque-observed valve-based control (RTOVC) framework to address velocity tracking in hydraulic IWDs that actuate heavy-duty wheeled mobile robots (HWMRs), considering such challenges as wheel slippages, sensor limitations, rough terrains, and modeling uncertainties. To overcome the sensor-dependent control systems associated with the closed-loop torque/pressure in hydraulic IWD-actuated HWMRs, a robust observer network based on an adaptive barrier Lyapunov function (BLF) is proposed to estimate the required in-wheel motor torque to track the velocity references. Then, another adaptive BLF for valve control signals is employed to modulate the hydraulic fluid to generate the estimated torque for each IWD. The RTOVC strategy ensures user-defined safety within the logarithmic BLF framework by constraining the valve control signal, actual velocity, velocity tracking error, and torque of each hydraulic IWD in an HWMR to avoid exceeding specified limits. Despite its safety constraints, external disturbances, and modeling uncertainties, robustness and uniformly exponential stability of the RTOVC-applied hydraulic IWD mechanism are ensured in HWMRs. Experimental investigations using a 6,500-kg HWMR, actuated by four independent IWDs under intense disturbances and safety-defined constraints, validate the performance of the RTOVC.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2024
- DOI:
- arXiv:
- arXiv:2409.11823
- Bibcode:
- 2024arXiv240911823H
- Keywords:
-
- Electrical Engineering and Systems Science - Systems and Control
- E-Print:
- This work has been submitted for possible publication in the Elsevier