Representation Tuning
Abstract
Activation engineering is becoming increasingly popular as a means of online control of large language models (LLMs). In this work, we extend the idea of inference-time steering with vectors that represent a behavioral direction of interest to tuning those vectors directly into the model, obviating the need for online control. First, we identify activation vectors related to honesty in an open-source LLM (Llama-2-13b-chat). Next, we demonstrate that model output can be made more or less honest by adding positive or negative multiples of these vectors to residual stream activations during generation. Then, we show that a similar effect can be achieved by fine-tuning the vectors directly into the model, by use of a dual loss function based on the cosine similarity of residual stream activations to the vectors combined with a standard token-based loss ("representation tuning"). Finally, we compare the generations in response to honesty-probing prompts from the resulting models to those from models fine-tuned with a token-based loss alone, and to those from the untuned model subjected to online steering. Overall, fine-tuning the vectors into the models using the cosine similarity plus token loss showed a stronger effect than online steering, and generalized better than using the standard loss, suggesting the potential utility of this approach as a safety measure. Code and data are available at https://github.com/cma1114/representation_tuning. Tuned models are available at https://huggingface.co/collections/cackerman/representation-tuning-66da1e5ab41cd1b824687d9f.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2024
- DOI:
- arXiv:
- arXiv:2409.06927
- Bibcode:
- 2024arXiv240906927A
- Keywords:
-
- Computer Science - Machine Learning;
- Computer Science - Computation and Language
- E-Print:
- 10 pages, 7 figures, 6 tables