BAMDP Shaping: a Unified Theoretical Framework for Intrinsic Motivation and Reward Shaping
Abstract
Intrinsic motivation (IM) and reward shaping are common methods for guiding the exploration of reinforcement learning (RL) agents by adding pseudo-rewards. Designing these rewards is challenging, however, and they can counter-intuitively harm performance. To address this, we characterize them as reward shaping in Bayes-Adaptive Markov Decision Processes (BAMDPs), which formalizes the value of exploration by formulating the RL process as updating a prior over possible MDPs through experience. RL algorithms can be viewed as BAMDP policies; instead of attempting to find optimal algorithms by solving BAMDPs directly, we use it at a theoretical framework for understanding how pseudo-rewards guide suboptimal algorithms. By decomposing BAMDP state value into the value of the information collected plus the prior value of the physical state, we show how psuedo-rewards can help by compensating for RL algorithms' misestimation of these two terms, yielding a new typology of IM and reward shaping approaches. We carefully extend the potential-based shaping theorem to BAMDPs to prove that when pseudo-rewards are BAMDP Potential-based shaping Functions (BAMPFs), they preserve optimal, or approximately optimal, behavior of RL algorithms; otherwise, they can corrupt even optimal learners. We finally give guidance on how to design or convert existing pseudo-rewards to BAMPFs by expressing assumptions about the environment as potential functions on BAMDP states.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2024
- DOI:
- 10.48550/arXiv.2409.05358
- arXiv:
- arXiv:2409.05358
- Bibcode:
- 2024arXiv240905358L
- Keywords:
-
- Computer Science - Machine Learning;
- Computer Science - Artificial Intelligence