Signatures of Linearized Gravity in Atom Interferometers: a Simplified Computational Framework
Abstract
We develop a general framework for calculating the leading-order, fully-relativistic contributions to the gravitational phase shift in single-photon atom interferometers within the context of linearized gravity. We show that the atom gradiometer observable, which only depends on the atom interferometer propagation phase, can be written in terms of three distinct contributions: the Doppler phase shift, which accounts for the tidal displacement of atoms along the baseline, the Shapiro phase shift, which accounts for the delay in the arrival time of photons at atom-light interaction points, and the Einstein phase shift, which accounts for the gravitational redshift measured by the atoms. For specific atom gradiometer configurations, we derive the signal and response functions for two physically-motivated scenarios: ($i$) transient gravitational waves in the transverse-traceless gauge and, for the first time, in the proper detector frame, and ($ii$) transient massive objects sourcing weak and slow-varying Newtonian potentials. We find that the Doppler contribution of realistic Newtonian noise sources ($e.g.$, a freight truck or a piece of space debris) at proposed atom gradiometer experiments, such as AION, MAGIS and AEDGE, can exceed the shot noise level and thus affect physics searches if not properly subtracted.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2024
- DOI:
- 10.48550/arXiv.2409.03828
- arXiv:
- arXiv:2409.03828
- Bibcode:
- 2024arXiv240903828B
- Keywords:
-
- General Relativity and Quantum Cosmology;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- High Energy Physics - Phenomenology;
- High Energy Physics - Theory;
- Physics - Atomic Physics
- E-Print:
- 44 pages including appendices, 4 figures