The Remarkable X-Ray Spectra and Variability of the Ultraluminous Weak-line Quasar SDSS J1521+5202
Abstract
We present a focused X-ray and multiwavelength study of the ultraluminous weak-line quasar (WLQ) SDSS J1521+5202, one of the few X-ray weak WLQs that is amenable to basic X-ray spectral and variability investigations. J1521+5202 shows striking X-ray variability during 2006–2023, by up to a factor of ≈32 in 0.5–2 keV flux, and our new 2023 Chandra observation caught it in its brightest X-ray flux state to date. Concurrent infrared/optical observations show only mild variability. The 2023 Chandra spectrum can be acceptably described by a power law with intrinsic X-ray absorption, and it reveals a nominal intrinsic level of X-ray emission relative to its optical/ultraviolet emission. In contrast, an earlier Chandra spectrum from 2013 shows apparent spectral complexity that is not well fit by a variety of models, including ionized absorption or standard Compton-reflection models. Overall, the observations are consistent with the thick-disk plus outflow model previously advanced for WLQs, where a nominal level of underlying X-ray emission plus variable absorption leads to the remarkable observed X-ray variability. In the case of J1521+5202, it appears likely that the outflow, and not the thick disk itself, lies along our line of sight and causes the X-ray absorption.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- October 2024
- DOI:
- arXiv:
- arXiv:2408.16060
- Bibcode:
- 2024ApJ...974....2W
- Keywords:
-
- X-ray quasars;
- Quasars;
- Active galaxies;
- High energy astrophysics;
- 1821;
- 1319;
- 17;
- 739;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 11 pages, 3 figures, accepted for publication in ApJ