A multi-band study of pulsar glitches with Fermi-LAT and Parkes
Abstract
Pulsar glitch is a phenomenon characterized by abrupt changes in the spin period over less than a minute. We present a comprehensive analysis of glitches in four gamma-ray pulsars by combining the timing observation data of \textit{Fermi} Large Area Telescope (\textit{Fermi}-LAT) and Parkes 64 m radio telescope. The timing data of five pulsars, namely PSRs J1028$-$5819, J1420$-$6048, J1509$-$5850, J1709$-$4429 (B1706$-$44) and J1718$-$3825, spanning over 14 years of observations for each, are examined. A total of 12 glitches are identified in four pulsars, including a previously unreported glitch. That is, a new small glitch is identified for PSR J1718$-$3825 in MJD $\sim$ 59121(8), and the fractional glitch size was $\Delta \nu/\nu \sim 1.9(2) \times 10^{-9}$. For PSR J1420$-$6048, our investigation confirms the existence of two linear recovery terms during the evolution of $\dot{\nu}$ subsequent to glitches 4, 6 and 8, and identified an exponential recovery process in glitch 8, with $Q = 0.0131(5)$, $\tau_{\rm d} = 100(6)$ d. Regarding the fourth glitch of PSR J1709$-$4429, our analysis reveals the presence of two exponential recovery terms with healing parameters and decay time-scales $Q$1=0.0104(5), $\tau_{\rm d1}=72(4)$ d and $Q$2 = 0.006(1), $\tau_{\rm d2}=4.2(6)$ d, respectively. For the remaining previously reported glitches, we refine the glitch epochs and glitch observables through precise fitting of the timing residual data. We extensively discuss how multi-band data of glitches can help better characterize the glitch recoveries and constrain the underlying physics of glitch events. We demonstrate that the accumulation of observational data reveals the rich complexity of the glitch phenomenon, aiding in the search for a well-established interpretation.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2024
- DOI:
- arXiv:
- arXiv:2408.15022
- Bibcode:
- 2024arXiv240815022L
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena;
- Nuclear Theory
- E-Print:
- 16 pages, 8 figures, 7 tables