Convex polygons and the isoperimetric problem in simply connected space forms $M_{\kappa}^2$
Abstract
In this article, we prove that there exists a unique perimeter minimizer among all piecewise smooth simple closed curves in $M_{\kappa}^2$ enclosing area $A > 0$ $(A \leq 2{\pi}$ if ${\kappa} = 1)$, and it is a circle in $M_{\kappa}^2$ of radius $AS_{\kappa} \left( \dfrac{ \sqrt{ A ( 4 {\pi} - {\kappa} A ) } }{ 2 {\pi} } \right)$, where $AS_{\kappa}(t) := t$ if ${\kappa} = 0$, arcsin$(t)$ if ${\kappa} = 1$, sinh$^{-1}(t)$ if ${\kappa} =-1$. We also prove the isoperimetric inequality for $M_{\kappa}^2$. We give an elementary geometric proof which is uniform for all three simply connected space forms.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2024
- DOI:
- 10.48550/arXiv.2408.13565
- arXiv:
- arXiv:2408.13565
- Bibcode:
- 2024arXiv240813565A
- Keywords:
-
- Mathematics - Differential Geometry;
- Mathematics - Optimization and Control;
- 53A04
- E-Print:
- 35 pages, 8 figures