Wiener-Lebesgue point property for Sobolev Functions on Metric Spaces
Abstract
We establish a Wiener-type integral condition for first-order Sobolev functions defined on a complete, doubling metric measure space supporting a Poincaré inequality. It is stronger than the Lebesgue point property, except for a marginal increase in the capacity of the set of non-Lebesgue points.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2024
- DOI:
- 10.48550/arXiv.2408.12327
- arXiv:
- arXiv:2408.12327
- Bibcode:
- 2024arXiv240812327A
- Keywords:
-
- Mathematics - Functional Analysis;
- Primary 46E36;
- Secondary 46E36;
- 31C15;
- 31C40