The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces III
Abstract
In this manuscript, we examine the continuity properties of the Riemann-Liouville fractional integral for order $\alpha = 1/p$, where $p > 1$, mapping from $L^p(t_0, t_1; X)$ to the Banach space $BMO(t_0, t_1; X)\cap K_{(p-1)/p}(t_0, t_1; X)$. This improvement, in some sense, refines a result by Hardy-Littlewood ([12]). To achieve this, we study properties between spaces $BMO(t_0, t_1; X)$ and $K_{(p-1)/p}(t_0, t_1; X)$. Additionally, we obtained the boundedness of the fractional integral of order $\alpha \geq 1$ from $L^1(t_0, t_1; X)$ into the Riemann-Liouville fractional Sobolev space $W^{s,p}_{RL}(t_0, t_1; X)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2024
- DOI:
- 10.48550/arXiv.2408.10180
- arXiv:
- arXiv:2408.10180
- Bibcode:
- 2024arXiv240810180M
- Keywords:
-
- Mathematics - Functional Analysis;
- 26A33;
- 47G10;
- 30H35