Saturation Numbers for Linear Forests $P_7+tP_2$
Abstract
Let $H$ be a fixed graph, a graph G is $H$-saturated if it has no copy of $H$ in $G$, but the addition of any edge in $E(\overline G)$ to $G$ results in an $H$-subgraph. The saturation number sat$(n,H)$ is the minimum number of edges in an $H$-saturated graph on $n$ vertices. In this paper, we determine the saturation number sat$(n,P_7+tP_2)$ for $n\geq \frac {14}{5}t+27$ and characterize the extremal graphs for $n\geq \frac{14}{13}(3t+25)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2024
- DOI:
- 10.48550/arXiv.2408.06719
- arXiv:
- arXiv:2408.06719
- Bibcode:
- 2024arXiv240806719Z
- Keywords:
-
- Mathematics - Combinatorics;
- 05C35
- E-Print:
- 11 pages