New variable weighted conditions for fractional maximal operators over spaces of homogeneous type
Abstract
Based on the rapid development of dyadic analysis and the theory of variable weighted function spaces over the spaces of homogeneous type $(X,d,\mu)$ in recent years, we systematically consider the quantitative variable weighted characterizations for fractional maximal operators. On the one hand, a new class of variable multiple weight $A_{\vec{p}(\cdot),q(\cdot)}(X)$ is established, which enables us to prove the strong and weak type variable multiple weighted estimates for multilinear fractional maximal operators ${{{\mathscr M}_{\eta }}}$. More precisely, \[ {\left[ {\vec \omega } \right]_{A_{\vec p( \cdot ),q( \cdot )}(X)}} \lesssim {\left\| \mathscr{M}_\eta \right\|_{\prod\limits_{i = 1}^m {L^{p_i( \cdot )}({X,\omega _i})} \to {L^{q( \cdot )}}(X,\omega )({WL^{q( \cdot )}}(X,\omega ))}} \le {C_{\vec \omega ,\eta ,m,\mu ,X,\vec p( \cdot )}}. \] On the other hand, on account of the classical Sawyer's condition $S_{p,q}(\mathbb{R}^n)$, a new variable testing condition $C_{{p}(\cdot),q(\cdot)}(X)$ also appears in here, which allows us to obtain quantitative two-weighted estimates for fractional maximal operators ${{{M}_{\eta }}}$. To be exact, \begin{align*} \|M_{\eta}\|_{L^{p(\cdot)}(X,\omega)\rightarrow L^{q(\cdot)}(X,v)} \lesssim \sum\limits_{\theta = \frac{1}{p_{\rm{ - }}},\frac{1}{p_{\rm{ + }}}} {{{\left( {{{[\omega ,v]}_{C_{p( \cdot ),q( \cdot )}^2(X)}} + {{[\omega ]}_{C_{p( \cdot ),q( \cdot )}^1(X)}}{{[\omega ,v]}_{C_{p( \cdot ),q( \cdot )}^2(X)}}} \right)}^\theta }}. \end{align*} The implicit constants mentioned above are independent on the weights.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2024
- DOI:
- 10.48550/arXiv.2408.04544
- arXiv:
- arXiv:2408.04544
- Bibcode:
- 2024arXiv240804544C
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- Mathematics - Functional Analysis;
- 42B25;
- 42B35
- E-Print:
- Some fallacies about the second main result have been corrected. arXiv admin note: substantial text overlap with arXiv:2404.15550