Fundamental physical constants, operation of physical phenomena and entropy increase
Abstract
Approaching the problem of understanding fundamental physical constants (FPCs) started with discussing the role these constants play in high-energy nuclear physics and astrophysics. Condensed matter physics was relatively unexplored in this regard. More recently, it was realised that FPCs set lower or upper bounds on key condensed matter properties. Here, we discuss a much wider role played by FPCs in condensed matter physics: at given environmental conditions, FPCs set the observability and operation of entire physical effects and phenomena. We discuss structural and superconducting phase transitions and transitions between different states of matter, with implications for life processes. We also discuss metastable states, transitions between them, chemical reactions and their products. A byproduct of this discussion is that the order of magnitude of the transition temperature can be calculated from FPCs only. We show that the new states emerging as a result of various transitions increase the phase space and entropy. Were FPCs to take different values, these transitions would become inoperative at our environmental conditions and the new states due to these transitions would not emerge. This suggests that the current values of FPCs, by enabling various transitions and reactions which give rise to new states, promote entropy increase. Based on this entropy increase and the associated increase of statistical probability, we conjecture that entropy increase is a selection principle for FPCs considered to be variable in earlier discussions.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2024
- DOI:
- arXiv:
- arXiv:2408.03773
- Bibcode:
- 2024arXiv240803773T
- Keywords:
-
- Condensed Matter - Statistical Mechanics;
- High Energy Physics - Theory;
- Nuclear Theory