NuLite -- Lightweight and Fast Model for Nuclei Instance Segmentation and Classification
Abstract
In pathology, accurate and efficient analysis of Hematoxylin and Eosin (H\&E) slides is crucial for timely and effective cancer diagnosis. Although many deep learning solutions for nuclei instance segmentation and classification exist in the literature, they often entail high computational costs and resource requirements, thus limiting their practical usage in medical applications. To address this issue, we introduce a novel convolutional neural network, NuLite, a U-Net-like architecture designed explicitly on Fast-ViT, a state-of-the-art (SOTA) lightweight CNN. We obtained three versions of our model, NuLite-S, NuLite-M, and NuLite-H, trained on the PanNuke dataset. The experimental results prove that our models equal CellViT (SOTA) in terms of panoptic quality and detection. However, our lightest model, NuLite-S, is 40 times smaller in terms of parameters and about 8 times smaller in terms of GFlops, while our heaviest model is 17 times smaller in terms of parameters and about 7 times smaller in terms of GFlops. Moreover, our model is up to about 8 times faster than CellViT. Lastly, to prove the effectiveness of our solution, we provide a robust comparison of external datasets, namely CoNseP, MoNuSeg, and GlySAC. Our model is publicly available at https://github.com/CosmoIknosLab/NuLite
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2024
- DOI:
- 10.48550/arXiv.2408.01797
- arXiv:
- arXiv:2408.01797
- Bibcode:
- 2024arXiv240801797T
- Keywords:
-
- Electrical Engineering and Systems Science - Image and Video Processing;
- Computer Science - Computer Vision and Pattern Recognition