p-adic Equiangular Lines and p-adic van Lint-Seidel Relative Bound
Abstract
We introduce the notion of p-adic equiangular lines and derive the first fundamental relation between common angle, dimension of the space and the number of lines. More precisely, we show that if $\{\tau_j\}_{j=1}^n$ is p-adic $\gamma$-equiangular lines in $\mathbb{Q}^d_p$, then \begin{align*} (1) \quad\quad \quad \quad |n|^2\leq |d|\max\{|n|, \gamma^2 \}. \end{align*} We call Inequality (1) as the p-adic van Lint-Seidel relative bound. We believe that this complements fundamental van Lint-Seidel \textit{[Indag. Math., 1966]} relative bound for equiangular lines in the p-adic case.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2024
- DOI:
- 10.48550/arXiv.2408.00810
- arXiv:
- arXiv:2408.00810
- Bibcode:
- 2024arXiv240800810M
- Keywords:
-
- Mathematics - Combinatorics;
- Mathematics - Functional Analysis;
- Mathematics - Number Theory;
- Mathematics - Spectral Theory;
- 12J25;
- 46S10;
- 47S10;
- 11D88
- E-Print:
- 5 Pages, 0 Figures