Binary quadratic forms of odd class number
Abstract
Let $-D$ be a fundamental discriminant. We express the number of representations of an integer by a positive definite binary quadratic form of discriminant $-D$ with an odd class number $h(-D)$ as a rational linear expression involving the Kronecker symbol $\left(\frac{-D}{.}\right)$ and the Fourier coefficients of certain cusp forms. We prove these cusp forms have eta quotient representations only if $D=23$. This provides, using theta functions, a generalization of a result of F. van der Blij from 1952 for binary quadratic forms of discriminant $-23$ to the case of forms of discriminant $-D$ with odd $h(-D)$. We also study the eta quotient representations of some related theta functions.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2408.00184
- arXiv:
- arXiv:2408.00184
- Bibcode:
- 2024arXiv240800184A
- Keywords:
-
- Mathematics - Number Theory;
- 11E25;
- 11E45