The HI extension of the standard HI spaces
Abstract
A Hereditarily Indecomposable (HI) Banach space $X$ admits an HI extension if there exists an HI space $Z$ such that $X$ is isomorphic to a subspace $Y$ of $Z$ and $Z/Y$ is of infinite dimension. The problem whether or not every HI space admits an HI extension is attributed to A. Pelczynski. In this paper we present a method to define HI-extensions of the standard HI spaces, a class which includes the Gowers-Maurey space, asymptotic $\ell_{p}$-HI spaces and others.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.20030
- arXiv:
- arXiv:2407.20030
- Bibcode:
- 2024arXiv240720030A
- Keywords:
-
- Mathematics - Functional Analysis;
- 46B03;
- 46B06
- E-Print:
- 27 pages, no figures