$C^{1}$-isometric embeddings of Riemmanian spaces in Lorentzian spaces
Abstract
For any compact Riemannian manifold $(V,g)$ and any Lorentzian manifold $(W,h)$, we prove that any spacelike embedding $f: V \rightarrow W$ that is long ($g\leq f^{*}h$) can be $C^{0}$-approximated by a $C^{1}$ isometric embedding $F: (V,g) \rightarrow (W,h)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.19333
- arXiv:
- arXiv:2407.19333
- Bibcode:
- 2024arXiv240719333B
- Keywords:
-
- Mathematics - Differential Geometry