Exceptional pairs on del Pezzo surfaces and spaces of compatible Feigin-Odesskii brackets
Abstract
We prove that for every relatively prime pair of integers $(d,r)$ with $r>0$, there exists an exceptional pair $({\mathcal O},V)$ on any del Pezzo surface of degree 4, such that $V$ is a bundle of rank $r$ and degree $d$. As an application, we prove that every Feigin-Odesskii Poisson bracket on a projective space can be included into a 5-dimensional linear space of compatible Poisson brackets. We also construct new examples of linear spaces of compatible Feigin-Odesskii Poisson brackets of dimension $>5$, coming from del Pezzo surfaces of degree $>4$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.19307
- arXiv:
- arXiv:2407.19307
- Bibcode:
- 2024arXiv240719307P
- Keywords:
-
- Mathematics - Algebraic Geometry
- E-Print:
- 16 pages