Global Minima by Penalized Full-dimensional Scaling
Abstract
The full-dimensional (metric, Euclidean, least squares) multidimensional scaling stress loss function is combined with a quadratic external penalty function term. The trajectory of minimizers of stress for increasing values of the penalty parameter is then used to find (tentative) global minima for low-dimensional multidimensional scaling. This is illustrated with several one-dimensional and two-dimensional examples.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.16645
- arXiv:
- arXiv:2407.16645
- Bibcode:
- 2024arXiv240716645D
- Keywords:
-
- Statistics - Computation;
- Statistics - Machine Learning;
- 62-04 62-08;
- G.3
- E-Print:
- 39 pages