Towards a solution of Archdeacon's conjecture on integer Heffter arrays
Abstract
In this paper, we make significant progress on a conjecture proposed by Dan Archdeacon on the existence of integer Heffter arrays $H(m,n;s,k)$ whenever the necessary conditions hold, that is, $3\leqslant s \leqslant n$, $3\leqslant k\leqslant m$, $ms=nk$ and $nk\equiv 0,3 \pmod 4$. By constructing integer Heffter array sets, we prove the conjecture in the affirmative whenever $k\geqslant 7\cdot \gcd(s,k)$ is odd and $s\neq 3,5,6,10$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.15183
- arXiv:
- arXiv:2407.15183
- Bibcode:
- 2024arXiv240715183P
- Keywords:
-
- Mathematics - Combinatorics;
- 05B20;
- 05B30