Dimension formula for the twisted Jacquet module of a cuspidal representation of $\GL(2n,\mathbb{F}_q)$
Abstract
Let $F$ be a finite field and $G=\GL(2n,F)$. In this paper, we calculate the dimension of the twisted Jacquet module $\pi_{N,\psi_{A}}$ where $A\in \M(n,F)$ is a rank $k$ matrix and $\pi$ is an irreducible cuspidal representation of $G$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.14240
- arXiv:
- arXiv:2407.14240
- Bibcode:
- 2024arXiv240714240B
- Keywords:
-
- Mathematics - Representation Theory
- E-Print:
- This is a preliminary draft. arXiv admin note: text overlap with arXiv:2206.03024, arXiv:2206.02634