Barycentric bounds on the error exponents of quantum hypothesis exclusion
Abstract
Quantum state exclusion is an operational task that has significance in studying foundational questions related to interpreting quantum theory. In such a task, one is given a system whose state is randomly selected from a finite set, and the goal is to identify a state from the set that is not the true state of the system. An error, i.e., an unsuccessful exclusion, occurs if and only if the state identified is the true state. In this paper, we study the optimal error probability of quantum state exclusion and its error exponent -- the rate at which the error probability decays asymptotically -- from an information-theoretic perspective. Our main finding is a single-letter upper bound on the error exponent of state exclusion given by the multivariate log-Euclidean Chernoff divergence, and we prove that this improves upon the best previously known upper bound. We also extend our analysis to the more complicated task of quantum channel exclusion, and we establish a single-letter and efficiently computable upper bound on its error exponent, even assuming the use of adaptive strategies. We derive both upper bounds, for state and channel exclusion, based on one-shot analysis and formulate them as a type of multivariate divergence measure called a barycentric Chernoff divergence. Moreover, our result on channel exclusion has implications in two important special cases. First, for the special case of two hypotheses, our upper bound provides the first known efficiently computable upper bound on the error exponent of symmetric binary channel discrimination. Second, for the special case of classical channels, we show that our upper bound is achievable by a nonadaptive strategy, thus solving the exact error exponent of classical channel exclusion and generalising a similar result on symmetric binary classical channel discrimination.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.13728
- arXiv:
- arXiv:2407.13728
- Bibcode:
- 2024arXiv240713728J
- Keywords:
-
- Quantum Physics;
- Computer Science - Information Theory;
- Mathematical Physics
- E-Print:
- 44 pages, 1 figure