Monodromy and irreducibility of type $A_1$ automorphic Galois representations
Abstract
Let $K$ be a totally real field and $\{\rho_{\pi,\lambda}:\mathrm{Gal}_K\to\mathrm{GL}_n(\overline E_\lambda)\}_\lambda$ the strictly compatible system of $K$ defined over $E$ attached to a regular algebraic polarized cuspidal automorphic representation $\pi$ of $\mathrm{GL}_n(\mathbb A_K)$. Let $\mathbf G_\lambda$ be the algebraic monodromy group of $\rho_{\pi,\lambda}$. If there exists $\lambda_0$ such that (a) $\rho_{\pi,\lambda_0}$ is irreducible, (b) $\mathbf G_{\lambda_0}$ is connected and of type $A_1$, and (c) either at most one basic factor in the exterior tensor decomposition of the tautological representation of $\mathbf G_{\lambda_0}^{\mathrm{der}}$ is $(\mathrm{SL}_2,\mathrm{std})$ or the tautological representation of $\mathbf G_{\lambda_0}^{\mathrm{der}}$ is $(\mathrm{SO}_4,\mathrm{std})$, we prove that $\mathbf G_{\lambda,\mathbb C}\subset\mathrm{GL}_{n, \mathbb C}$ is independent of $\lambda$, $\rho_{\pi,\lambda}$ is irreducible for all $\lambda$ and residually irreducible for almost all $\lambda$. If moreover $K=\mathbb Q$, we prove that the compatible system $\{\rho_{\pi,\lambda}\}_\lambda$ is up to twist constructed from some two-dimensional modular compatible systems.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.12566
- arXiv:
- arXiv:2407.12566
- Bibcode:
- 2024arXiv240712566H
- Keywords:
-
- Mathematics - Number Theory;
- 11F80;
- 11F70;
- 11F22;
- 20G05
- E-Print:
- 14 pages