Strong u-invariant and Period-Index bound for complete ultrametric fields
Abstract
Let $k$ be a complete ultrametric valued field. Let u($k$) (resp. u_s($k$)) denote the u-invariant (resp. the strong u-invariant) of $k$. We give a description of this invariant for $k$ in terms of the u-invariant (resp. the strong u-invariant) of its residue field. Let $C$ be a curve over $k$ and $F$ = $k(C)$. We prove similar results for the u-invariant of $F$. For $l$ a prime away from the characteristic of the residue field of $k$, we obtain bounds for the Brauer-$l$-dimensions of $k$ and $F$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.12169
- arXiv:
- arXiv:2407.12169
- Bibcode:
- 2024arXiv240712169M
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Number Theory