Mountain Pass Solutions for an entire semipositone problem involving the Grushin Subelliptic Operator
Abstract
For $N\ge 3$ we study the following semipositone problem $$ -\Delta_\gamma u = g(z) f_a(u) \quad \hbox{in $\mathbb{R}^N$}, $$ where $\Delta_\gamma$ is the Grushin operator $$ \Delta_ \gamma u(z) = \Delta_x u(z) + \vert x \vert^{2\gamma} \Delta_y u (z) \quad (\gamma\ge 0), $$ $g\in L^1(\mathbb{R}^N)\cap L^\infty(\mathbb{R}^N)$ is a positive function, $a>0$ is a parameter and $f_a$ is a continuous function on $\mathbb{R}$ that coincides with $f(t) -a$ for $t\in\mathbb{R}^+$, where $f$ is a continuous function with subcritical and Ambrosetti-Rabinowitz type growth and which satisfies $f(0) = 0$. Depending on the range of $a$, we obtain the existence of positive mountain pass solutions in $D_\gamma(\mathbb{R}^N)$
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.10742
- arXiv:
- arXiv:2407.10742
- Bibcode:
- 2024arXiv240710742M
- Keywords:
-
- Mathematics - Analysis of PDEs