String C-groups of order $4p^m$
Abstract
Let $(G,\{\rho_0, \rho_1, \rho_2\})$ be a string C-group of order $4p^m$ with type $\{k_1, k_2\}$ for $m \geq 2$, $k_1, k_2\geq 3$ and $p$ be an odd prime. Let $P$ be a Sylow $p$-subgroup of $G$. We prove that $G \cong P \rtimes (\mathbb{Z}_2 \times \mathbb{Z}_2)$, $d(P)=2$, and up to duality, $p \mid k_1, 2p \mid k_2$. Moreover, we show that if $P$ is abelian, then $(G,\{\rho_0, \rho_1, \rho_2\})$ is tight and hence known. In the case where $P$ is nonabelian, we construct an infinite family of string C-group with type $\{p, 2p\}$ of order $4p^m$ where $m \geq 3$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.10388
- arXiv:
- arXiv:2407.10388
- Bibcode:
- 2024arXiv240710388H
- Keywords:
-
- Mathematics - Group Theory;
- Mathematics - Combinatorics;
- 20B25;
- 20D10;
- 52B10;
- 52B15
- E-Print:
- arXiv admin note: text overlap with arXiv:2107.02925