The Cosmological Preference for Negative Neutrino Mass
Abstract
The most precise determination of the sum of neutrino masses from cosmological data, derived from analysis of the cosmic microwave background (CMB) and baryon acoustic acoustic oscillations (BAO) from the Dark Energy Spectroscopic Instrument (DESI), favors a value below the minimum inferred from neutrino flavor oscillation experiments. We explore which data is most responsible of this puzzling aspect of the current constraints on neutrino mass and whether it is related to other anomalies in cosmology. We demonstrate conclusively that the preference for negative neutrino masses is a consequence of larger than expected lensing of the CMB in both the two- and four-point lensing statistics. Furthermore, we show that this preference is robust to changes in likelihoods of the BAO and CMB optical depth analyses given the available data. We then show that this excess clustering is not easily explained by changes to the expansion history and is likely distinct from the preference for for dynamical dark energy in DESI BAO data. Finally, we discuss how future data may impact these results, including an analysis of Planck CMB with mock DESI 5-year data. We conclude that the negative neutrino mass preference is likely to persist even as more cosmological data is collected in the near future.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- arXiv:
- arXiv:2407.07878
- Bibcode:
- 2024arXiv240707878G
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- High Energy Physics - Phenomenology;
- High Energy Physics - Theory
- E-Print:
- 35 pages, 12 figures, 2 tables