Finite Blocklength Performance of Capacity-achieving Codes in the Light of Complexity Theory
Abstract
Since the work of Polyanskiy, Poor and Verdú on the finite blocklength performance of capacity-achieving codes for discrete memoryless channels, many papers have attempted to find further results for more practically relevant channels. However, it seems that the complexity of computing capacity-achieving codes has not been investigated until now. We study this question for the simplest non-trivial Gaussian channels, i.e., the additive colored Gaussian noise channel. To assess the computational complexity, we consider the classes $\mathrm{FP}_1$ and $\#\mathrm{P}_1$. $\mathrm{FP}_1$ includes functions computable by a deterministic Turing machine in polynomial time, whereas $\#\mathrm{P}_1$ encompasses functions that count the number of solutions verifiable in polynomial time. It is widely assumed that $\mathrm{FP}_1\neq\#\mathrm{P}_1$. It is of interest to determine the conditions under which, for a given $M \in \mathbb{N}$, where $M$ describes the precision of the deviation of $C(P,N)$, for a certain blocklength $n_M$ and a decoding error $\epsilon > 0$ with $\epsilon\in\mathbb{Q}$, the following holds: $R_{n_M}(\epsilon)>C(P,N)-\frac{1}{2^M}$. It is shown that there is a polynomial-time computable $N_*$ such that for sufficiently large $P_*\in\mathbb{Q}$, the sequences $\{R_{n_M}(\epsilon)\}_{{n_M}\in\mathbb{N}}$, where each $R_{n_M}(\epsilon)$ satisfies the previous condition, cannot be computed in polynomial time if $\mathrm{FP}_1\neq\#\mathrm{P}_1$. Hence, the complexity of computing the sequence $\{R_{n_M}(\epsilon)\}_{n_M\in\mathbb{N}}$ grows faster than any polynomial as $M$ increases. Consequently, it is shown that either the sequence of achievable rates $\{R_{n_M}(\epsilon)\}_{n_M\in\mathbb{N}}$ as a function of the blocklength, or the sequence of blocklengths $\{n_M\}_{M\in\mathbb{N}}$ corresponding to the achievable rates, is not a polynomial-time computable sequence.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.07773
- arXiv:
- arXiv:2407.07773
- Bibcode:
- 2024arXiv240707773B
- Keywords:
-
- Computer Science - Information Theory
- E-Print:
- The results were presented at ISIT 2024 in the recent result session. The ISIT 2024 poster for the extended abstract is attached to the paper