On some conjectural determinants of Sun involving residues
Abstract
For an odd prime $p$ and integers $d, k, m$ with gcd$(p,d)=1$ and $2\leq k\leq \frac{p-1}{2}$, we consider the determinant \begin{equation*} S_{m,k}(d,p) = \left|(\alpha_i - \alpha_j)^m\right|_{1 \leq i,j \leq \frac{p-1}{k}}, \end{equation*} where $\alpha_i$ are distinct $k$-th power residues modulo $p$. In this paper, we deduce some residue properties for the determinant $S_{m,k}(d,p)$ as a generalization of certain results of Sun. Using these, we further prove some conjectures of Sun related to $$\left(\frac{\sqrt{S_{1+\frac{p-1}{2},2}(-1,p)}}{p}\right) \text{ and } \left(\frac{\sqrt{S_{3+\frac{p-1}{2},2}(-1,p)}}{p}\right).$$ In addition, we investigate the number of primes $p$ such that $p\ |\ S_{m+\frac{p-1}{k},k}(-1,p)$, and confirm another conjecture of Sun related to $S_{m+\frac{p-1}{2},2}(-1,p)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.07085
- arXiv:
- arXiv:2407.07085
- Bibcode:
- 2024arXiv240707085C
- Keywords:
-
- Mathematics - Number Theory;
- 11A07;
- 11A15;
- 11C20;
- 15A15;
- 15B36;
- 11R11
- E-Print:
- Submitted for publication on 2nd July, 2024. Comments are welcome