On uniqueness for hyperbolic half-wave maps in dimension $d \geq 3$
Abstract
We obtain a uniqueness result for the half-wave maps equation in dimension $d \geq 3$ in the natural energy class with $\mathbb{H}^2$ target. We first reformulate the half-wave maps equation into a wave maps equation, then isometrically embed $\mathbb{H}^2$ into some $\mathbb{R}^m$ using the Nash embedding, and then use a Grönwall's argument.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.06448
- arXiv:
- arXiv:2407.06448
- Bibcode:
- 2024arXiv240706448R
- Keywords:
-
- Mathematics - Analysis of PDEs