Brezis--Browder type results and representation formulae for s--harmonic functions
Abstract
In this paper we prove Brezis--Browder type results for homogeneous fractional Sobolev spaces $\mathring{H}^s(\R^d)$ and quantitive type estimates for $s$--harmonic functions. Such outcomes give sufficient conditions for a linear and continuous functional $T$ defined on $\mathring{H}^s(\R^d)$ to admit (up to a constant) an integral representation of its norm in terms of the Coulomb type energy $$\|T\|^2_{\mathring{H}^{-s}(\R^d)}=\int_{\R^d}\int_{\R^d}\frac{T(x)T(y)}{|x-y|^{d-2s}}dx dy, $$ and for distributional solutions of $(-\Delta)^su=T$ on $\R^d$ to be of the form $$u(x)=\int_{\R^d}\frac{T(y)}{|x-y|^{d-2s}}dy+l, \quad l\in \R. $$
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.06442
- arXiv:
- arXiv:2407.06442
- Bibcode:
- 2024arXiv240706442G
- Keywords:
-
- Mathematics - Analysis of PDEs;
- Primary 35R11;
- 42B37