FGA: Fourier-Guided Attention Network for Crowd Count Estimation
Abstract
Crowd counting is gaining societal relevance, particularly in domains of Urban Planning, Crowd Management, and Public Safety. This paper introduces Fourier-guided attention (FGA), a novel attention mechanism for crowd count estimation designed to address the inefficient full-scale global pattern capture in existing works on convolution-based attention networks. FGA efficiently captures multi-scale information, including full-scale global patterns, by utilizing Fast-Fourier Transformations (FFT) along with spatial attention for global features and convolutions with channel-wise attention for semi-global and local features. The architecture of FGA involves a dual-path approach: (1) a path for processing full-scale global features through FFT, allowing for efficient extraction of information in the frequency domain, and (2) a path for processing remaining feature maps for semi-global and local features using traditional convolutions and channel-wise attention. This dual-path architecture enables FGA to seamlessly integrate frequency and spatial information, enhancing its ability to capture diverse crowd patterns. We apply FGA in the last layers of two popular crowd-counting works, CSRNet and CANNet, to evaluate the module's performance on benchmark datasets such as ShanghaiTech-A, ShanghaiTech-B, UCF-CC-50, and JHU++ crowd. The experiments demonstrate a notable improvement across all datasets based on Mean-Squared-Error (MSE) and Mean-Absolute-Error (MAE) metrics, showing comparable performance to recent state-of-the-art methods. Additionally, we illustrate the interpretability using qualitative analysis, leveraging Grad-CAM heatmaps, to show the effectiveness of FGA in capturing crowd patterns.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- arXiv:
- arXiv:2407.06110
- Bibcode:
- 2024arXiv240706110C
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition
- E-Print:
- Accepted to IJCNN'24