Cavity QED in a High NA Resonator
Abstract
From fundamental studies of light-matter interaction to applications in quantum networking and sensing, cavity quantum electrodynamics (QED) provides a platform-crossing toolbox to control interactions between atoms and photons. The coherence of such interactions is determined by the product of the single-pass atomic absorption and the number of photon round-trips. Reducing the cavity loss has enabled resonators supporting nearly 1-million optical roundtrips at the expense of severely limited optical material choices and increased alignment sensitivity. The single-pass absorption probability can be increased through the use of near-concentric, fiber or nanophotonic cavities, which reduce the mode waists at the expense of constrained optical access and exposure to surface fields. Here we present a new high numerical-aperture, lens-based resonator that pushes the single-atom-single-photon absorption probability per round trip close to its fundamental limit by reducing the mode size at the atom below a micron while keeping the atom mm-to-cm away from all optics. This resonator provides strong light-matter coupling in a cavity where the light circulates only ~ 10 times. We load a single 87Rb atom into such a cavity, observe strong coupling, demonstrate cavity-enhanced atom detection with imaging fidelity of 99.55(6) percent and survival probability of 99.89(4) percent in 130 microseconds, and leverage this new platform for a time-resolved exploration of cavity cooling. The resonator's loss-resilience paves the way to coupling of atoms to nonlinear and adaptive optical elements and provides a minimally invasive route to readout of defect centers. Introduction of intra-cavity imaging systems will enable the creation of cavity arrays compatible with Rydberg atom array computing technologies, vastly expanding the applicability of the cavity QED toolbox.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.04784
- arXiv:
- arXiv:2407.04784
- Bibcode:
- 2024arXiv240704784S
- Keywords:
-
- Physics - Atomic Physics;
- Condensed Matter - Quantum Gases;
- Quantum Physics