On certain determinants and the square root of some determinants involving Legendre Symbols
Abstract
Let $p>3$ be a prime and $(\frac{.}{p})$ be the Legendre symbol. For any integer $d$ with $p\nmid d$ and any positive integer $m$, Sun introduced the determinants $$T_m(d,p)=\det\left[(i^2+dj^2)^m\left(\frac{i^2+dj^2}{p}\right)\right]_{1\leqslant i,j \leqslant (p-1)/2},$$ and $$D_p^{(m)}= \det\left[(i^2-j^2)^m\left(\frac{i^2-j^2}{p}\right)\right]_{1\leq i,j\leq (p-1)/2} .$$ In this paper, we obtain some properties of $T_m (d,p)$ and $ \sqrt{D_p^{(m)}}$ for some $m$. We also confirm some related conjectures posed by Zhi-Wei Sun.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.04556
- arXiv:
- arXiv:2407.04556
- Bibcode:
- 2024arXiv240704556R
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- 20 pages