Trace Paley-Wiener theorem for Braverman-Kazhdan's asymptotic Hecke algebra
Abstract
Let $\mathbf G$ be a reductive algebraic group over a non-archimedean local field $F$ of characteristic zero and let $G=\mathbf G(F)$ be the group of $F$-rational points. Let $\mathcal H(G)$ be the Hecke algebra and let $\mathcal J(G)$ be the asymptotic Hecke algebra, as defined by Braverman and Kazhdan. We classify irreducible representations of $\mathcal J(G)$. As a consequence, we prove a conjecture of Bezrukavnikov-Braverman-Kazhdan that the inclusion $\mathcal H(G)\subset\mathcal J(G)$ induces an isomorphism $\mathcal H(G)/[\mathcal H(G),\mathcal H(G)]\simeq\mathcal J(G)/[\mathcal J(G),\mathcal J(G)]$ on the cocenters. We also provide an explicit description of $\mathcal J(G)$ and the cocenter $\mathcal H(G)/[\mathcal H(G),\mathcal H(G)]$ when $\mathbf G=\mathrm{GL}_n$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- arXiv:
- arXiv:2407.02752
- Bibcode:
- 2024arXiv240702752S
- Keywords:
-
- Mathematics - Representation Theory;
- 22E50
- E-Print:
- 13 pages