Linear codes with few weights over $\mathbb{F}_{p}+u\mathbb{F}_{p}$
Abstract
For any positive integer $m$ and an odd prime $p$; let $\mathbb{F}_{q}+u\mathbb{F}_{q}$, where $q=p^{m}$, be a ring extension of the ring $\mathbb{F}_{p}+u\mathbb{F}_{p}.$ In this paper, we construct linear codes over $\mathbb{F}_{p}+u\mathbb{F}_{p}$ by using trace function defined on $\mathbb{F}_{q}+u\mathbb{F}_{q}$ and determine their Hamming weight distributions by employing symplectic-weight distributions of their Gray images.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2024
- DOI:
- 10.48550/arXiv.2406.18325
- arXiv:
- arXiv:2406.18325
- Bibcode:
- 2024arXiv240618325K
- Keywords:
-
- Computer Science - Information Theory;
- 94B05;
- 11T71