Nondegenerate Turán problems under $(t,p)$-norms
Abstract
Given integers $r > t \ge 1$ and a real number $p > 0$, the $(t,p)$-norm $\left\lVert \mathcal{H} \right\rVert_{t,p}$ of an $r$-graph $\mathcal{H}$ is the sum of the $p$-th power of the degrees $d_{\mathcal{H}}(T)$ over all $t$-subsets $T \subset V(\mathcal{H})$. We conduct a systematic study of the Turán-type problem of determining $\mathrm{ex}_{t,p}(n,\mathcal{F})$, which is the maximum of $\left\lVert \mathcal{H} \right\rVert_{t,p}$ over all $n$-vertex $\mathcal{F}$-free $r$-graphs $\mathcal{H}$. We establish several basic properties for the $(t,p)$-norm of $r$-graphs, enabling us to derive general theorems from the recently established framework in~\cite{CL24} that are useful for determining $\mathrm{ex}_{t,p}(n,\mathcal{F})$ and proving the corresponding stability. We determine the asymptotic value of $\mathrm{ex}_{t,p}(n,H_{F}^{r})$ for all feasible combinations of $(r,t,p)$ and for every graph $F$ with chromatic number greater than $r$, where $H_{F}^{r}$ represents the expansion of $F$. In the case where $F$ is edge-critical and $p \ge 1$, we establish strong stability and determine the exact value of $\mathrm{ex}_{t,p}(n,H_{F}^{r})$ for all sufficiently large $n$. These results extend the seminal theorems of Erdős--Stone--Simonovits, Andrásfai--Erdős--Sós, Erdős--Simonovits, and a classical theorem of Mubayi. For the $3$-uniform generalized triangle $F_5$, we determine the exact value of $\mathrm{ex}_{2,p}(n,F_5)$ for all $p \ge 1$ and its asymptotic value for all $p \in [1/2, 1]\cup \{k^{-1} \colon k \in 6\mathbb{N}^{+}+\{0,2\}\}$. This extends old theorems of Bollobás, Frankl--Füredi, and a recent result of Balogh--Clemen--Lidický. Our proofs utilize results on the graph inducibility problem, Steiner triple systems, and the feasible region problem introduced by Liu--Mubayi.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2024
- DOI:
- 10.48550/arXiv.2406.15934
- arXiv:
- arXiv:2406.15934
- Bibcode:
- 2024arXiv240615934C
- Keywords:
-
- Mathematics - Combinatorics
- E-Print:
- comments are welcome