Abstract
JWST has revealed a large population of UV-bright galaxies at $z\gtrsim 10$ and possibly overly massive galaxies at $z\gtrsim 7$, challenging standard galaxy formation models in the ΛCDM cosmology. We use an empirical galaxy formation model to explore the potential of alleviating these tensions through an Early Dark Energy (EDE) model, originally proposed to solve the Hubble tension. Our benchmark model demonstrates excellent agreement with the UV luminosity functions (UVLFs) at $4\lesssim z \lesssim 10$ in both ΛCDM and EDE cosmologies. In the EDE cosmology, the UVLF measurements at $z\simeq 12$ based on spectroscopically confirmed galaxies (eight galaxies at $z\simeq 11\!-\!13.5$) exhibit no tension with the benchmark model. Photometric constraints at $12 \lesssim z\lesssim 16$ can be fully explained within EDE via either moderately increased star-formation efficiencies ($\epsilon _{\ast}\sim 3\!-\!10\ \hbox{per cent}$ at $M_{\rm halo}\sim 10^{10.5}{\, \rm M_\odot }$) or enhanced UV variabilities ($\sigma _{\rm UV}\sim 0.8\!-\!1.3$ mag at $M_{\rm halo}\sim 10^{10.5}{\, \rm M_\odot }$) that are within the scatter of hydrodynamical simulation predictions. A similar agreement is difficult to achieve in $\Lambda$CDM, especially at $z\gtrsim 14$, where the required $\sigma _{\rm UV}$ exceeds the maximum value seen in simulations. Furthermore, the implausibly large cosmic stellar mass densities inferred from some JWST observations are no longer in tension with cosmology when the EDE is considered. Our findings highlight EDE as an intriguing unified solution to a fundamental problem in cosmology and the recent tensions raised by JWST observations. Data at the highest redshifts reached by JWST will be crucial for differentiating modified galaxy formation physics from new cosmological physics.